Oracle PL/SQL Handbook

Raman Deep Singh

We are using DBeaver for running pl/sql code in this article
you can also use SQL Developer for learning PL/SQL using this article

Here is the screenshot to connect to Oracle Schema

-
%) Connect to a database O X

| Oracle Connection Settings

Oracle connection settings ORAC I—E

Main Oracle properties Driver properties SSH Proxy
Connection Type:
Basic TNS Custom

Host: localhost Port: 1521
Database: | ORCL ~| Service Name
Authentication

Authentication: Oracle Database Native

Username: system Role: Normal ~

Password: sesses Save password locally

Client: ' C:\Users\raman\AppData\Local\Temp"

@ You can use variables in connection parameters. Connection details (name, type, ...)

Nriver name: Nrarle Nriver Settinnc

< Back Next > Cancel

To use this article on PL/SQL

Make the following table in oracle schema you are using for this article
create table students(rollno number,name varchar2(20),marks number);
then insert five records in table students

insert into students values(1,’raman’,90);

insert into students values(2,’aman’,89);

insert into students values(3,’harman’,78);

insert into students values(4,’ajay’,66);

insert into students values(5,’vijay’,77);

What is a View and How to create a view

View is a virtual table which means it does not physically exists. For example a view can be created to
pull up few columns or records from table using a sql statement. Following is a view that pulls out
only rollno and name from table students.

CREATE VIEW viewst AS SELECT rollno,name FROM students;

Following is the query to pull out records from viewst

SELECT * FROM viewst;

Blocks in PL/SQL

structure of a pl/sqgl program

declare (optional)
begin (mandatory)
exception (optional)

end; (mandatory)

example of anonymous block

declare
begin
null;

end;

there are three types of blocks

anonymous blocks
procedures

functions

pl/sql program to print hello world on output screen

set serveroutput on;

begin

dbms_output.put_line("HELLO WORLD');
end;

output

HELLO WORLD

set serveroutput on command will set serveroutput on if you will set serveroutput on the output will
not be displayed on output window

program to declare a varchar2 variable and print the value in the variable

declare
namestr wvarchar2 (30) ;
begin
namestr:='RAMAN';
dbms_output.put line (namestr);
end;

output

RAMAN

program to initialize a number variable and assign value 50 to it and print the value

declare

a number (10) ;
begin

a:=50;

dbms output.put line(a);
end;

output

50

program to iniatize a number and assign value 50.24 to it and print the value

declare
a number (5,2) ;
begin
a:=50.24;
dbms_output.put line(a);
end;

output

50.24

program to find sum of two numbers

declare

a NUMBER;
b NUMBER;
c NUMBER;
begin
a:=10;
b:=20;
c:=a+tb;
dbms output.put line('Sum of a and b is ' || c);
end;

output

Sum of a and b is 30

program to find between two numbers

declare
a NUMBER;
b NUMBER;
c NUMBER;
begin
a:=100;
b:=20;
c:=a-b;
dbms_output.put line('Difference between a and b is ' || ¢);
end;

output

Difference between a and b is 80

program to multiply two numbers

declare
a NUMBER;
b NUMBER;
c NUMBER;
begin
a:=100;
b:=20;
c:=a*b;
dbms_output.put line('Product of a and b is ' || ¢);
end;

output

product of a and b is 2000

program to divide two numbers

declare
a NUMBER;
b NUMBER;
c NUMBER;
begin
a:=100;
b:=20;
c:=a/b;
dbms_output.put line('Quotient of a and b is ' []| c);
end;

output

Quotientofaand b is 5

program to find remainder of two numbers

declare
a NUMBER (10,2) ;
b NUMBER (10,2)
c NUMBER (10, 2) ;
begin
a:=101;
b:=20;
c:=a MOD b;
dbms output.put line('Remainder of a and b is ' || c¢);
end;

’

output

Remainder ofaand bis 1

program to print current date using date variable

DECLARE
a DATE NOT NULL:= sysdate;
BEGIN
dbms_output.put line('Current Date is ' || a);
END;
output

Current Date is 10-JUN-23

program to print date and time with current timestamp and also to demonstrate timestamp datatype

DECLARE
a TIMESTAMP NOT NULL:= systimestamp;
BEGIN
dbms_output.put line('Current Date with timestamp is ' || a);
END;
output

Current Date with timestamp is 10-JUN-23 10.11.46.372000 AM

program to print date and time and timezone

DECLARE

a TIMESTAMP WITH time ZONE NOT NULL:= systimestamp;
BEGIN

dbms_output.put line('Current Date with timestamp is ' || a);
END;

output

Current Date with timestamp is 10-JUN-23 10.14.00.330000 AM +02:00

Program to demonstrate %type

%type means you are copying datatype of one variable to another

DECLARE
a varchar2(20) :='RAMAN';
b a%TYPE := 'AMAN';
BEGIN
]

dbms output.put line('Value in a is
dbms_output.put line('Value in b is '

END;

output

Value in a is RAMAN
Value in b is AMAN

Comments means line of codes which will not be executed they will be only read by the programmer.
Single line comments cover a single line and multiple line comments cover multiple lines.

Example of single line comment

DECLARE
a varchar2(20) :='RAMAN';
BEGIN
--This is a single line comment
dbms output.put line('Value in a is ' || a);
END; B B
output

Value in a is RAMAN

Example of multiline comment

DECLARE

a varchar2(20) :='RAMAN';
BEGIN

/* This is a multiple

line comment */

dbms output.put line('Value in a is ' || a);
END;

Output

Value in a is RAMAN

Control Structures

if statement

if statement is used to check for a condition is true or not

DECLARE

a NUMBER;
begin

a:=10;

IF a=10 then
dbms_output.put line('Value of a is equal to 10");

ELSE
dbms_output.put line('Value of a is not equal to 10");
END IF;

END;

output

Value of a is equal to 10

if statement to check whether number is greater than 10 or not

DECLARE

a NUMBER;
begin

a:=10;

IF a>10 then
dbms_output.put line('Value of a is greater 10");

ELSE
dbms_output.put line('Value of a is less than or equal to 10");
END IF;

END;

output

Value of a is less than or equal to 10

if statement to check whether number is less than 10 or not

DECLARE

a NUMBER;
begin

a:=10;

IF a<10 then
dbms output.put line('Value of a is less than 10');

ELSE
dbms_output.put line('Value of a is greater than or equal to 10");
END IF;

END;

output

Value of a is greater than or equal to 10

if statement to check whether number is not equal to 10

DECLARE

a NUMBER;
begin

a:=10;

IF a!=10 then
dbms_output.put line('Value of a is not equal to 10");

ELSE
dbms_output.put line('Value of a is equal to 10");
END IF;

END;

output

Value of a is not equal to 10

example of if elsif statement
if salary is between 1 and 20000 it will print salary is between 1 and 20000

if salary is between 20001 and 40000 it will print salary is between 200001 and 40000

DECLARE
salary NUMBER;
begin
salary:=25000;
IF salary>0 AND salary<=20000 then
dbms_output.put line('Salary is between 1 and 20000");
ELSIF salary>20000 AND salary<=40000 then
dbms_output.put line('Salary is between 20001 and 40000");

else
dbms_output.put line('Salary is above 40000'");
END IF;

END;

output

Salary is between 20001 and 40000

Case Expressions
This is an example of case expression
if v_job_code=SA_MAN v_salary_increase will be 0.2

if v_job_code= SA_REP v_salary_increase will be 0.3

DECLARE
v_Jjob_ code VARCHAR2 (10) := 'SA MAN';
v_salary increase NUMBER;
BEGIN
v_salary increase := CASE v_job code
WHEN 'SA MAN' THEN 0.2
WHEN 'SA REP' THEN 0.3
ELSE O
END;
dbms output.put line('Your salary increase is : '|| v_salary increase);
END;

Output

Your salary increase is : .2

Example of CASE Statement

DECLARE
v_job code VARCHAR2 (10) := 'IT PROG';
v_department VARCHAR2 (10) := 'IT';
v salary increase NUMBER;
BEGIN B
CASE
WHEN v_job code = 'SA MAN' THEN
v_salary increase := 0.2;

dbms_output.put line('The salary increase for a Sales Manager is: '||
v_salary increase);
WHEN v department = 'IT' AND v _job code = 'IT PROG' THEN
v_salary increase := 0.2;
dbms_output.put line('The salary increase for a Sales Manager is: '||
v_salary increase);
ELSE
v_salary increase := 0;
dbms_output.put line('The salary increase for this job code is: '||
v_salary increase);
END CASE;
END;

Output

The salary increase for a Sales Manager is: .2

Example of basic loop

DECLARE
v_counter NUMBER (2) := 1;
BEGIN
LOOP
dbms output.put line('My counter is : '|| v_counter);
v_counter := v_counter + 1;
EXIT WHEN v _counter > 10;
END LOOP;
END;

Output

My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is

O oo Jo Ud wh

Example of while loop to print numbers from 1 to 10

DECLARE
v_counter NUMBER (2) := 1;
BEGIN
WHILE v_counter <= 10 LOOP
dbms_output.put line('My counter is : '|| v_counter);
v_counter := v_counter + 1;
END LOOP;
END;

Output

My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is

O o Joy Ul b Wb

Example of for loop to print numbers from 1 to 10

BEGIN
FOR i IN 1..10 LOOP
dbms_ output.put line('My counter is : ' || 1);
END LOOP;
END;

My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is

O o Jo Od Wi

Example of for loop to print numbers from 10 to 1 using REVERSE Keyword.

BEGIN
FOR i1 IN REVERSE 1..10 LOOP
dbms_output.put line('My counter is : ' || 1);
END LOOP;
END;

(@)

My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is
My counter is

RN WS 0oy Jd 00 o

Using SQL within PL/SQL
Following code can retrieve only 1 record from table

DECLARE
vrollno NUMBER;
vname VARCHAR2 (50) ;
vmarks NUMBER;
BEGIN
SELECT rollno,name,marks INTO vrollno,vname,vmarks FROM students WHERE
rollno=1;

dbms output.put line('Rollno - ' || vrollno || ' Name - ' || vname || '
Marks - ' || wvmarks) ;
END;

Above Code will give output

Rollno - 1 Name - raman Marks - 89

Example of sgl Statement where we don’t put a value in where condition but
we use equality symbol in where condition

DECLARE
vrollno NUMBER :=2;
vname VARCHAR2 (50) ;
vmarks NUMBER;
BEGIN
SELECT rollno,name,marks INTO vrollno,vname,vmarks FROM students WHERE
rollno=vrollno;

dbms output.put line('Rollno - ' || vrollno || ' Name - ' || vname || '
Marks - ' || wvmarks);
END;
Output
Rollno - 2 Name - aman Marks - 84

Taking data from sgl query using records or S$type

vrollno students.rollno%$type; means there is a table students and you are
using datatype of column rollno as datatype of vrollno

DECLARE
vrollno students.rollno%type;
vname students.name%$TYPE;

vmarks students.marks$TYPE;
BEGIN
SELECT rollno,name,marks INTO vrollno,vname,vmarks FROM students WHERE
rollno=1;

dbms output.put line('Rollno - ' || vrollno || ' Name - ' || vname || '
Marks - ' || wvmarks) ;
END;
Output
Rollno - 1 Name - raman Marks - 89

Example to perform dml operations like insert into table students in pl/sql
code

BEGIN
INSERT INTO students wvalues (6, 'arman',b88);
END;

What is a sequence?

sequence 1is used to increment a field or a column

For example you want to increase rollno by 1 whenever you want to insert
record in table students.

You can create a sequence sl which starts with 7 and increments by 1

CREATE SEQUENCE sl
START WITH 1
INCREMENT BY 1;

Now we will write pl/sqgl code to insert a record in table students using
sequence sl
sl.nextval will give next number in the sequence

begin
INSERT INTO students wvalues (sl.nextval, 'ajay',79);
END;

currval will give current value of sequence

begin
dbms_output.put line(sl.currval);
END;

Records in PL/SQL

Records means you can take whole row in table students in a record like
s_record and you can declare a record using $ROWTYPE.

for example to create a record s rec which matches a row in table students
you can write

s _rec students%ROWTYPE;

Example of record

DECLARE
s_rec students%ROWTYPE;
BEGIN
SELECT * INTO s rec FROM students WHERE rollno=1;
dbms_output.put line('Rollno : ' || s rec.rollno || ' Name : ' ||
s _rec.name || ' Marks : ' || s _rec.marks);
END;
Output

Rollno : 1 Name : ajay Marks : 79

Example of composite datatype varrays
varray is a fixed sized array.
array 1is a collection of records of fixed size.

DECLARE
TYPE names_list IS wvarray(5) OF varchar2(20);
names names_list;
BEGIN
names:=names_list ('raman', 'aman', "harman', 'sunil', 'vijay');
FOR i IN 1..5 LOOP
dbms_output.put line (names (1)) ;
END LOOP;

END;
Output

raman
aman
harman
sunil
vijay

count method or function of varrays

DECLARE
TYPE names list IS wvarray(5) OF varchar2(20);
names names_list;
BEGIN
names:=names_list ('raman', 'aman', "harman', 'sunil', 'vijay"');
FOR 1 IN 1. .names.count () LOOP
dbms_output.put line (names(1i)) ;
END LOOP;

END;
Output

raman
aman
harman
sunil
vijay

first and last method of varrays

DECLARE

TYPE names list IS varray(5) OF varchar2(20);

names names_list;

BEGIN
names:=names_list('raman', 'aman', 'harman', 'sunil', 'vijay"');

FOR i IN names.FIRST() .. names.last() LOOP
dbms_output.put line (names (1)) ;

END LOOP;

END;
Output

raman
aman
harman
sunil
vijay

example of exists function

DECLARE
TYPE names list IS wvarray(5) OF varchar2(20);
names names_list;
BEGIN
names:=names_list ('raman', 'aman', "harman', 'sunil', 'vijay');
FOR 1 IN 1 .. 5 LOOP
IF names.exists (i) then
dbms_output.put line (names (i)) ;
END IF;
END LOOP;

END;
Output

raman
aman
harman
sunil
vijay

example of limit function

DECLARE
TYPE names list IS wvarray(5) OF varchar2(20);
names names_list;

BEGIN
names:=names_list ('raman', 'aman', "harman', 'sunil', 'vijay');
dbms_output.put line (names.limit());

END;

Output

5

Nested tables
Nested table is a composite datatype and are like varrays

example of nested table
DECLARE

TYPE names list IS table OF varchar2 (20);
names names_list;

BEGIN
names:=names_list('raman', 'aman', 'harman', 'sunil', 'vijay"');
FOR i IN 1 .. names.count() loop

dbms_output.put line (names (1)) ;

END LOOP;

END;

Output

raman

aman

harman

sunil

vijay

Cursors
Explicit Cursors are used to pull records from sgl table one by one.
Following is an example

DECLARE
crollno students.rollno%type;
cname students.name%type;
cmarks students.marks3type;
CURSOR c_student is
SELECT rollno, name, marks FROM students;
BEGIN
OPEN c student;
LOOP
FETCH c_student into crollno, cname, cmarks;
EXIT WHEN c student%notfound;

dbms_output.put line('Rollno : ' || crollno || ' - Name : ' || cname

|l ' - Marks : ' || cmarks);

END LOOP;

CLOSE c_student;
END;
Output
Rollno : 2 - Name : aman - Marks : 89
Rollno : 3 - Name : harman - Marks : 77
Rollno : 1 - Name : raman - Marks : 90

Explanation of the above code

Above cursor will pull records from table students and place the values in
variables crollno,cname and cmarks.

CURSOR Keyword declares a cursor.

open keyword opens a cursor.

loop keyword will run a loop and within the loop a cursor named as
c_student will fetch records from table students one by one in variables
crollno, cname and cmarks one by one and dbms output.put line will print
the values line by line

end loop finishes the loop.

Close statement closes the cursor, it will close close the cursor when no
more record is found.

EXIT WHEN c student%notfound;

the above statement will check whether there are more records in the table
or not.

Following cursor will pull records from table in a pl/sgl record.

DECLARE
csrecord students$Srowtype;
CURSOR c_student is
SELECT rollno, name, marks FROM students;
BEGIN
OPEN c_ student;
LOOP
FETCH c_student into csrecord;
EXIT WHEN c student%notfound;

dbms_output.put line('Rollno : ' || csrecord.rollno || ' - Name : '
|| csrecord.name || ' - Marks : ' || csrecord.marks);
END LOOP;

CLOSE c_student;

END;

Output

Rollno : 2 - Name : aman - Marks : 89
Rollno : 3 - Name : harman - Marks : 77
Rollno : 1 - Name : raman - Marks : 90

What are Functions in PL/SQL

Functions mean is a group of statements which run as a whole and returns a
value.

Following function will return maximum marks from table students

CREATE OR REPLACE FUNCTION findmaxmarksl
RETURN number
IS
fmarks number;
BEGIN
SELECT max (students.marks) INTO fmarks FROM students.students;
RETURN fmarks;
END findmaxmarksl;

Now How to call function findmaxmarksl

Following is the code

DECLARE
fma number;
BEGIN
fma:=findmaxmarksl () ;
dbms_output.put line('Maximum Marks in Table Students are : ' ||
fma);
END;
fma:=findmaxmarksl () ; statement calls the function findmaxmarksl and stores

the returned value in fma variable.
Output

Maximum Marks in Table Students are : 90

Now we will create a function to return name of student through a rollno

CREATE OR REPLACE FUNCTION printnamel (rno IN number)
RETURN students.NAMEStype
Is
na students.NAMEStype;
BEGIN

SELECT name INTO na FROM students.students WHERE
students.students.rollno=rno;

RETURN na;

END printnamel;

Here the function name is printnamel rno is the parameter or argument
passed to function

function returns a varchar2 (20) variable because datatype of students.name
column is varchar2 (20).

Function Body starts after begin statement and declaration of variables is
done after IS statement.
RETURN statement returns a varchar2 (20) variable.

Now calling printnamel function

DECLARE
nastr students.name%type;
BEGIN
nastr:=printnamel (1) ;
dbms_output.put line('Name in Table Students for Rollno 1 is : ' []
nastr) ;
END;
Output
Name in Table Students for Rollno 1 is : raman

Procedures in PL/SQL is piece of code that is executed as a whole but it
does not returns a value.

Following is the example

CREATE OR REPLACE procedure findmaxmarksp

IS

fmarks number;

BEGIN
SELECT max (students.marks) INTO fmarks FROM students.students;
dbms output.put line('Maximum Marks are : ' || fmarks);

END findmaxmarksp;
Following is the pl/sgl block to call the procedure
BEGIN
findmaxmarksp;
END;

Output

Maximum Marks are : 90

Following is the example of procedure in which we pass an argument to
procedure

CREATE OR REPLACE procedure printnamep (rno IN number)
IS
na students.NAMEStype;
BEGIN

SELECT name INTO na FROM students.students WHERE
students.students.rollno=rno;

dbms output.put line(na);
END printnamep;

Calling the above procedure
BEGIN

printnamep(2);
END;

Output

aman

What are packages?
Packages are group of functions and packages in it
Following is a package that contains procedure hello which print hello

First of all we create a package with name as packaged4 and then create the
package body. After that we call procedure hello by applying (.)

CREATE or replace PACKAGE package4 AS
PROCEDURE hello;

END packaged;

CREATE OR REPLACE PACKAGE BODY package4d AS

procedure hello

as

BEGIN

dbms output.put line('Hello');

END;
end;

Following code will call procedure hello in package packaged.

BEGIN
packaged.hello () ;

END;
Output

Hello

Following is an example of creating a function that will contain
a procedure hello and function hellof

hello will print hello

hellof will print Hello Function and will return value O.

CREATE or REPLACE PACKAGE package5 AS
PROCEDURE hello;
function hellof return number;

END package5;

CREATE OR REPLACE PACKAGE BODY package5 AS

procedure hello

as

BEGIN

dbms_output.put line('Hello');

END;

function hellof return number

as

begin

dbms_output.put line('Hello Function');

return O;
END;
end;

/

DECLARE
a NUMBER;
BEGIN
packageb.hello () ;
a:=packageb.hellof () ;
END;

Output

Hello
Hello Function

Following is the procedure that will print records in table students using
a cursor.

CREATE OR REPLACE PROCEDURE printcursor
AS
crollno students.rollno%type;
cname students.name%type;
cmarks students.marksStype;
CURSOR c_student is
SELECT rollno, name, marks FROM students;
BEGIN
OPEN c_ student;
LOOP
FETCH c_student into crollno, cname, cmarks;
EXIT WHEN c student%notfound;

dbms_output.put line('Rollno : ' || crollno || ' - Name : ' || cname
|l " - Marks : ' || cmarks);
END LOOP;
CLOSE c_student;

END;
Now call this procedure

begin
printcursor;
END;

Output

Rollno
Rollno
Rollno
Rollno

- Name : raman - Marks : 90
- Name : aman - Marks : 89
Name : harman - Marks : 77
- Name : raman - Marks : 90

R w N
|

Triggers

Triggers are events or actions performed before or after any ddl or dml
command is executed.

Following trigger will let user insert marks in table students if marks>=40
otherwise it will show error message that user cannot insert record.

CREATE OR REPLACE TRIGGER checkmarksl

BEFORE insert ON students.students

FOR each row

BEGIN

IF :NEW.marks<40 THEN

raise application error (-20007, 'Marks cannot be less than 40');
END IF;

END;

When you will write query

insert into students wvalues (1, 'raman', 63);
record will be inserted

when you will write query

insert into students wvalues (1, 'raman',33);

you will get following error

Error starting at line : 11 in command -

insert into students values(l, 'raman', 33)

Error at Command Line : 11 Column : 13

Error report -

SQL Error: ORA-20007: Marks cannot be less than 40
ORA-06512: at "STUDENTS.CHECKMARKS1", line 3

ORA-04088: error during execution of trigger 'STUDENTS.CHECKMARKS1'

