
How to Create a Web API using Flask Framework in Python

This tutorial will guide you through create Web API using Flask Framework.

For creating a webapi in python using flask you need flask-restful package.

pip install flask-restful

Above command will install flask-restful package

Flask Restful is an extension for Flask that adds support for building REST APIs in Python using Flask

as the back-end. It encourages best practices and is very easy to set up. Flask restful is very easy to

pick up if you’re already familiar with flask.

In flask_restful, the main building block is a resource. Each resource can have several methods

associated with it such as GET, POST, PUT, DELETE, etc. for example, there could be a resource that

calculates the square of a number whenever a get request is sent to it. Each resource is a class that

inherits from the Resource class of flask_restful. Once the resource is created and defined, we can

add our custom resource to the api and specify a URL path for that corresponding resource.

using flask_restful
from flask import Flask, jsonify, request
from flask_restful import Resource, Api

creating the flask app
app = Flask(__name__)
creating an API object
api = Api(app)

making a class for a particular resource
the get, post methods correspond to get and post requests
they are automatically mapped by flask_restful.
other methods include put, delete, etc.
class Hello(Resource):

 # corresponds to the GET request.
 # this function is called whenever there
 # is a GET request for this resource
 def get(self):

 return jsonify({'message': 'hello world'})

 # Corresponds to POST request
 def post(self):

 data = request.get_json() # status code
 return jsonify({'data': data}), 201

another resource to calculate the square of a number
class Square(Resource):

 def get(self, num):

 return jsonify({'square': num**2})

adding the defined resources along with their corresponding urls
api.add_resource(Hello, '/')
api.add_resource(Square, '/square/<int:num>')

driver function
if __name__ == '__main__':

 app.run(debug = True)

