How to Create a Web API using Flask Framework in Python

This tutorial will guide you through create Web API using Flask Framework.
For creating a webapi in python using flask you need flask-restful package.
pip install flask-restful

Above command will install flask-restful package

Flask Restful is an extension for Flask that adds support for building REST APIs in Python using Flask
as the back-end. It encourages best practices and is very easy to set up. Flask restful is very easy to
pick up if you're already familiar with flask.

In flask_restful, the main building block is a resource. Each resource can have several methods
associated with it such as GET, POST, PUT, DELETE, etc. for example, there could be a resource that
calculates the square of a number whenever a get request is sent to it. Each resource is a class that
inherits from the Resource class of flask_restful. Once the resource is created and defined, we can
add our custom resource to the api and specify a URL path for that corresponding resource.

using flask_restful
from flask import Flask, jsonify, request
from flask restful import Resource, Api

creating the flask app
app = Flask(__name_)
creating an API object

api = Api(app)

making a class for a particular resource

the get, post methods correspond to get and post requests
they are automatically mapped by flask restful.

other methods include put, delete, etc.

class Hello(Resource):

corresponds to the GET request.

this function is called whenever there
1s a GET request for this resource

def get(self):

return jsonify({'message': 'hello world'})

Corresponds to POST request
def post(self):

data = request.get_json() # status code
return jsonify({'data': data}), 201

another resource to calculate the square of a number
class Square(Resource):

def get(self, num):
return jsonify({'square': num**2})
adding the defined resources along with their corresponding urls

api.add_resource(Hello, '/"')
api.add_resource(Square, '/square/<int:num>")

driver function
if __name__ == "

__main__"':

app.run(debug = True)

